深入理解BP神经网络

2024-05-18 23:25

1. 深入理解BP神经网络

BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神经网络模型:
  
 BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层;第二阶段是误差的反向传播,从输出层到隐含层,最后到输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置。
                                          
 神经网络的基本组成单元是神经元。神经元的通用模型如图所示,其中常用的激活函数有阈值函数、sigmoid函数和双曲正切函数。 
                                          
 神经元的输出为: 
                                          
 神经网络是将多个神经元按一定规则联结在一起而形成的网络,如图 所示。 
                                          
 从图 可以看出,一个神经网络包括输入层、隐含层(中间层)和输出层。输入层神经元个数与输入数据的维数相同,输出层神经元个数与需要拟合的数据个数相同,隐含层神经元个数与层数就需要设计者自己根据一些规则和目标来设定。在深度学习出现之前,隐含层的层数通常为一层,即通常使用的神经网络是3层网络。 
  
 BP网络采用的传递函数是非线性变换函数——Sigmoid函数(又称S函数)。其特点是函数本身及其导数都是连续的,因而在处理上十分方便。为什么要选择这个函数,等下在介绍BP网络的学习算法的时候会进行进一步的介绍。S函数有单极性S型函数和双极性S型函数两种,单极性S型函数定义如下:f(x)=1/1+e−x
  
 其函数曲线如图所示:
                                          
 双极性S型函数:f(x)=1−e−x/1+e−x
  
 
  
                                          
 使用S型激活函数时,输入:
                                          
 输出:
                                          
 输出的导数:
                                          
 使用S型激活函数时,BP网络的输出及其导数图形:
                                          
 根据S激活函数的图形:
  
 net在 -5~0 的时候导数的值为正,且导数的值逐渐增大, 说明此时f(x)在逐渐变大 且 变大的速度越来越快 
  
 net在 0~5  的时候导数的值为正,且导数的值逐渐减小, 说明此时f(x)在逐渐变大 但是 变大的速度越来越慢 
  
 对神经网络进行训练,我们应该尽量将net的值尽量控制在收敛比较快的范围内。
                                                                                                                                                                                                                                                                                                                                                                                                                  
 1.  定义一个BP神经网络的类,设置网络相关参数
                                          
 2.    实例化该神经网络,按下图被构建成一个输出3维,输出1维,带有3个隐藏层(每个隐藏层10个节点)的BP网络;(此处还可以随意扩展输入、输出维度和隐藏层相关系数)
                                          
 3.    初始化BP神经网络的时候,开始初始化各层网络节点的 权重、权重动量、误差初始值
                                          
 4.  引入学习训练数据;4组输入、输出数据迭代5000次
                                          
     5000次中不断向前逐层计算输出的节点数据
                                          
     并同时逐层计算误差反向修改权重值,直到迭代完毕;注意误差函数值必须呈现下降趋势
                                          
 5.  引入数据进行结果预测,将数据带回模型计算得结果;最终可知预测结果趋近于0.7
                                                                                  
 神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内。例如预报天气:温度 湿度 气压等作为输入 天气情况作为输出利用历史得输入输出关系训练出神经网络,然后利用这样的神经网络输入今天的温度 湿度 气压等 得出即将得天气情况。同理,运用到自动化测试中,使用测试数据反映结果走向,bug数,质量问题等情况也可以做到提前预测的!
  
  附录:

深入理解BP神经网络

2. bp神经网络的缺点

1)局部极小化问题:从数学角度看,传统的BP神经网络为一种局部搜索的优化方法,它要解决的是一个复杂非线性化问题,网络的权值是通过沿局部改善的方向逐渐进行调整的,这样会使算法陷入局部极值,权值收敛到局部极小点,从而导致网络训练失败。加上BP神经网络对初始网络权重非常敏感,以不同的权重初始化网络,其往往会收敛于不同的局部极小,这也是很多学者每次训练得到不同结果的根本原因。2)BP神经网络算法的收敛速度慢:由于BP神经网络算法本质上为梯度下降法,它所要优化的目标函数是非常复杂的,因此,必然会出现“锯齿形现象”,这使得BP算法低效;又由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿。3)BP神经网络结构选择不一:BP神经网络结构的选择至今尚无一种统一而完整的理论指导,一般只能由经验选定。网络结构选择过大,训练中效率不高,可能出现过拟合现象,造成网络性能低,容错性下降,若选择过小,则又会造成网络可能不收敛。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题。4)应用实例与网络规模的矛盾问题:BP神经网络难以解决应用问题的实例规模和网络规模间的矛盾问题,其涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题。5)BP神经网络预测能力和训练能力的矛盾问题:预测能力也称泛化能力或者推广能力,而训练能力也称逼近能力或者学习能力。一般情况下,训练能力差时,预测能力也差。

3. 为什么我的BP神经网络的预测输出结果几乎是一样的呢

最大的可能性是没有归一化。具体原因见下:
下面这个是经典的Sigmoid函数的曲线图:

如果不进行归一化,则过大的输入x将会导致Sigmoid函数进入平坦区,全部趋近于1,即最后隐层的输出全部趋同。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。

使用matlab进行归一化通常使用mapminmax函数,它的用法:
[Y,PS] = mapminmax(X,YMIN,YMAX)——将数据X归一化到区间[YMIN,YMAX]内,YMIN和YMAX为调用mapminmax函数时设置的参数,如果不设置这两个参数,这默认归一化到区间[-1, 1]内。标准化处理后的数据为Y,PS为记录标准化映射的结构体。我们一般归一化到(0,1)区间内。

为什么我的BP神经网络的预测输出结果几乎是一样的呢

4. bp神经网络函数中哪个预测性能好

traingdm是带动量的梯度下降法,trainlm是指L-M优化算法,trainscg是指量化共轭梯度法,除此之外还有traingdx、traingda等,都是权值的训练算法。看MATLAB结合神经网络的基础书上都有介绍。tansig和logsig  统称Sigmoid函数,logsig是单极性S函数,tansig是双极性S函数,也叫双曲正切函数,purelin是线性函数,是节点的传输函数。

学习函数和训练函数的区别:学习函数的输出是权值和阈值的增量,训练函数的输出是训练好的网络和训练记录,在训练过程中训练函数不断调用学习函数修正权值和阈值,通过检测设定的训练步数或性能函数计算出的误差小于设定误差,来结束训练。    

下面是几个仿真实验,用了不同的训练函数:
1.创建BP网络的学习函数,训练函数和性能函数都采用default值,分别为learngdm,trainlm和mse时的逼近结果:
由此可见,进过200次训练后,虽然网络的性能还没有为0,但是输出均方误差已经很小了,MSE=6.72804e-0.06,显示的结果也证明P和T之间非线性映射关系的拟合是非常精确的;
2.建立一个学习函数为learnd,训练函数为traingd,和性能函数为msereg的BP网络,来完成拟合任务:
可见,经过200次训练后,网络的输出误差比较大,而且网络误差的收敛速度非常慢。这是由于训练函数traingd为单纯的梯度下降训练函数,训练速度比较慢,而且容易陷入局部最小的情况。结果显示网络精度确实比较差。
3.将训练函数修改为traingdx,该i函数也是梯度下降法训练函数,但是在训练过程中,他的学习速率是可变的
在200次训练后,以msereg函数评价的网络性能为1.04725,已经不是很大,结果显示P和T之间非线性关系的拟合情况不错,网络的性能不错。

5. 神经网络bp算法可以对样本进行预测,具体是预测什么?

关于神经网络(matlab)归一化的整理
由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:(by james)
1、线性函数转换,表达式如下:
y=(x-MinValue)/(MaxValue-MinValue)
说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。
2、对数函数转换,表达式如下:
y=log10(x)
说明:以10为底的对数函数转换。
3、反余切函数转换,表达式如下:
y=atan(x)*2/PI
归一化是为了加快训练网络的收敛性,可以不进行归一化处理
归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的统计概率分布;
当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。为了避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。
归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。所以这样做分类的问题时用[0.9 0.1 0.1]就要比用[1 0 0]要好。
但是归一化处理并不总是合适的,根据输出值的分布情况,标准化等其它统计变换方法有时可能更好。
关于用premnmx语句进行归一化:
premnmx语句的语法格式是:[Pn,minp,maxp,Tn,mint,maxt]=premnmx(P,T)
其中P,T分别为原始输入和输出数据,minp和maxp分别为P中的最小值和最大值。mint和maxt分别为T的最小值和最大值。
premnmx函数用于将网络的输入数据或输出数据进行归一化,归一化后的数据将分布在[-1,1]区间内。
我们在训练网络时如果所用的是经过归一化的样本数据,那么以后使用网络时所用的新数据也应该和样本数据接受相同的预处理,这就要用到tramnmx。
下面介绍tramnmx函数:
[Pn]=tramnmx(P,minp,maxp)
其中P和Pn分别为变换前、后的输入数据,maxp和minp分别为premnmx函数找到的最大值和最小值。
(by terry2008)
matlab中的归一化处理有三种方法
1. premnmx、postmnmx、tramnmx
2. restd、poststd、trastd
3. 自己编程
具体用那种方法就和你的具体问题有关了
(by happy)
pm=max(abs(p(i,:))); p(i,:)=p(i,:)/pm;
和
for i=1:27
p(i,:)=(p(i,:)-min(p(i,:)))/(max(p(i,:))-min(p(i,:)));
end 可以归一到0 1 之间
0.1+(x-min)/(max-min)*(0.9-0.1)其中max和min分别表示样本最大值和最小值。
这个可以归一到0.1-0.9

神经网络bp算法可以对样本进行预测,具体是预测什么?

6. BP神经网络的可行性分析

神经网络的是我的毕业论文的一部分
4.人工神经网络
人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
4.1人工神经网络学习的原理
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。 
所以网络学习的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。 
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
4.2人工神经网络的优缺点
人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:
(1)并行分布性处理
因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个小的处理单元,则整个系统可以是一个分布式计算系统,这样就避免了以往的“匹配冲突”,“组合爆炸”和“无穷递归”等题,推理速度快。
(2)可学习性
一个相对很小的人工神经网络可存储大量的专家知识,并且能根据学习算法,或者利用样本指导系统来模拟现实环境(称为有教师学习),或者对输入进行自适应学习(称为无教师学习),不断地自动学习,完善知识的存储。
(3)鲁棒性和容错性
由于采用大量的神经元及其相互连接,具有联想记忆与联想映射能力,可以增强专家系统的容错能力,人工神经网络中少量的神经元发生失效或错误,不会对系统整体功能带来严重的影响。而且克服了传统专家系统中存在的“知识窄台阶”问题。
(4)泛化能力
人工神经网络是一类大规模的非线形系统,这就提供了系统自组织和协同的潜力。它能充分逼近复杂的非线形关系。当输入发生较小变化,其输出能够与原输入产生的输出保持相当小的差距。
(5)具有统一的内部知识表示形式,任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,便于知识库的组织管理,通用性强。
虽然人工神经网络有很多优点,但基于其固有的内在机理,人工神经网络也不可避免的存在自己的弱点:
(1)最严重的问题是没能力来解释自己的推理过程和推理依据。
(2)神经网络不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。
(3)神经网络把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。
(4)神经网络的理论和学习算法还有待于进一步完善和提高。
4.3神经网络的发展趋势及在柴油机故障诊断中的可行性
神经网络为现代复杂大系统的状态监测和故障诊断提供了全新的理论方法和技术实现手段。神经网络专家系统是一类新的知识表达体系,与传统专家系统的高层逻辑模型不同,它是一种低层数值模型,信息处理是通过大量的简单处理元件(结点) 之间的相互作用而进行的。由于它的分布式信息保持方式,为专家系统知识的获取与表达以及推理提供了全新的方式。它将逻辑推理与数值运算相结合,利用神经网络的学习功能、联想记忆功能、分布式并行信息处理功能,解决诊断系统中的不确定性知识表示、获取和并行推理等问题。通过对经验样本的学习,将专家知识以权值和阈值的形式存储在网络中,并且利用网络的信息保持性来完成不精确诊断推理,较好地模拟了专家凭经验、直觉而不是复杂的计算的推理过程。
但是,该技术是一个多学科知识交叉应用的领域,是一个不十分成熟的学科。一方面,装备的故障相当复杂;另一方面,人工神经网络本身尚有诸多不足之处:
(1)受限于脑科学的已有研究成果。由于生理实验的困难性,目前对于人脑思维与记忆机制的认识还很肤浅。
(2)尚未建立起完整成熟的理论体系。目前已提出了众多的人工神经网络模型,归纳起来,这些模型一般都是一个由结点及其互连构成的有向拓扑网,结点间互连强度所构成的矩阵,可通过某种学习策略建立起来。但仅这一共性,不足以构成一个完整的体系。这些学习策略大多是各行其是而无法统一于一个完整的框架之中。
(3)带有浓厚的策略色彩。这是在没有统一的基础理论支持下,为解决某些应用,而诱发出的自然结果。
(4)与传统计算技术的接口不成熟。人工神经网络技术决不能全面替代传统计算技术,而只能在某些方面与之互补,从而需要进一步解决与传统计算技术的接口问题,才能获得自身的发展。
虽然人工神经网络目前存在诸多不足,但是神经网络和传统专家系统相结合的智能故障诊断技术仍将是以后研究与应用的热点。它最大限度地发挥两者的优势。神经网络擅长数值计算,适合进行浅层次的经验推理;专家系统的特点是符号推理,适合进行深层次的逻辑推理。智能系统以并行工作方式运行,既扩大了状态监测和故障诊断的范围,又可满足状态监测和故障诊断的实时性要求。既强调符号推理,又注重数值计算,因此能适应当前故障诊断系统的基本特征和发展趋势。随着人工神经网络的不断发展与完善,它将在智能故障诊断中得到广泛的应用。
根据神经网络上述的各类优缺点,目前有将神经网络与传统的专家系统结合起来的研究倾向,建造所谓的神经网络专家系统。理论分析与使用实践表明,神经网络专家系统较好地结合了两者的优点而得到更广泛的研究和应用。
离心式制冷压缩机的构造和工作原理与离心式鼓风机极为相似。但它的工作原理与活塞式压缩机有根本的区别,它不是利用汽缸容积减小的方式来提高汽体的压力,而是依靠动能的变化来提高汽体压力。离心式压缩机具有带叶片的工作轮,当工作轮转动时,叶片就带动汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。这种压缩机由于它工作时不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,所以称这种型式的压缩机为离心式压缩机。其中根据压缩机中安装的工作轮数量的多少,分为单级式和多级式。如果只有一个工作轮,就称为单级离心式压缩机,如果是由几个工作轮串联而组成,就称为多级离心式压缩机。在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。单级离心式制冷压缩机的构造主要由工作轮、扩压器和蜗壳等所组成。 压缩机工作时制冷剂蒸汽由吸汽口轴向进入吸汽室,并在吸汽室的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进入高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,因为只有通过工作轮才能将能量传给汽体)。汽体在叶片作用下,一边跟着工作轮作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压流动,从而使汽体的压力和速度都得到提高。由工作轮出来的汽体再进入截面积逐渐扩大的扩压器4(因为汽体从工作轮流出时具有较高的流速,扩压器便把动能部分地转化为压力能,从而提高汽体的压力)。汽体流过扩压器时速度减小,而压力则进一步提高。经扩压器后汽体汇集到蜗壳中,再经排气口引导至中间冷却器或冷凝器中。 

二、离心式制冷压缩机的特点与特性 

离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列优点: 

(1)单机制冷量大,在制冷量相同时它的体积小,占地面积少,重量较活塞式轻5~8倍。 

(2)由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,因而工作可靠、运转平稳、噪音小、操作简单、维护费用低。 

(3)工作轮和机壳之间没有摩擦,无需润滑。故制冷剂蒸汽与润滑油不接触,从而提高了蒸发器和冷凝器的传热性能。 

(4)能经济方便的调节制冷量且调节的范围较大。 

(5)对制冷剂的适应性差,一台结构一定的离心式制冷压缩机只能适应一种制冷剂。 

(6)由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25~30万大卡/时以上。如制冷量太少,则要求流量小,流道窄,从而使流动阻力大,效率低。但近年来经过不断改进,用于空调的离心式制冷压缩机,单机制冷量可以小到10万大卡/时左右。 

制冷与冷凝温度、蒸发温度的关系。 

由物理学可知,回转体的动量矩的变化等于外力矩,则 

T=m(C2UR2-C1UR1) 

两边都乘以角速度ω,得 

Tω=m(C2UωR2-C1UωR1) 

也就是说主轴上的外加功率N为: 

N=m(U2C2U-U1C1U) 

上式两边同除以m则得叶轮给予单位质量制冷剂蒸汽的功即叶轮的理论能量头。 U2 C2 


ω2 C2U R1 R2 ω1 C1 U1 C2r β 离心式制冷压缩机的特性是指理论能量头与流量之间变化关系,也可以表示成制冷 

W=U2C2U-U1C1U≈U2C2U 

(因为进口C1U≈0) 

又C2U=U2-C2rctgβ C2r=Vυ1/(A2υ2) 

故有 


W= U22(1- 

Vυ1 

ctgβ) 


A2υ2U2 

式中:V—叶轮吸入蒸汽的容积流量(m3/s) 

υ1υ2 ——分别为叶轮入口和出口处的蒸汽比容(m3/kg) 

A2、U2—叶轮外缘出口面积(m2)与圆周速度(m/s) 

β—叶片安装角 

由上式可见,理论能量头W与压缩机结构、转速、冷凝温度、蒸发温度及叶轮吸入蒸汽容积流量有关。对于结构一定、转速一定的压缩机来说,U2、A2、β皆为常量,则理论能量头W仅与流量V、蒸发温度、冷凝温度有关。 

按照离心式制冷压缩机的特性,宜采用分子量比较大的制冷剂,目前离心式制冷机所用的制冷剂有F—11、F—12、F—22、F—113和F—114等。我国目前在空调用离心式压缩机中应用得最广泛的是F—11和F—12,且通常是在蒸发温度不太低和大制冷量的情况下,选用离心式制冷压缩机。此外,在石油化学工业中离心式的制冷压缩机则采用丙烯、乙烯作为制冷剂,只有制冷量特别大的离心式压缩机才用氨作为制冷剂。 

三、离心式制冷压缩机的调节 

离心式制冷压缩机和其它制冷设备共同构成一个能量供给与消耗的统一系统。制冷机组在运行时,只有当通过压缩机的制冷剂的流量与通过设备的流量相等时,以及压缩机所产生的能量头与制冷设备的阻力相适应时,制冷系统的工况才能保持稳定。但是制冷机的负荷总是随外界条件与用户对冷量的使用情况而变化的,因此为了适应用户对冷负荷变化的需要和安全经济运行,就需要根据外界的变化对制冷机组进行调节,离心式制冷机组制冷量的调节有:1°改变压缩机的转速;2°采用可转动的进口导叶;3°改变冷凝器的进水量;4°进汽节流等几种方式,其中最常用的是转动进口导叶调节和进汽节流两种调节方法。所谓转动进口导叶调节,就是转动压缩机进口处的导流叶片以使进入到叶轮去的汽体产生旋绕,从而使工作轮加给汽体的动能发生变化来调节制冷量。所谓进汽节流调节,就是在压缩机前的进汽管道上安装一个调节阀,如要改变压缩机的工况时,就调节阀门的大小,通过节流使压缩机进口的压力降低,从而实现调节制冷量。离心式压缩机制冷量的调节最经济有效的方法就是改变进口导叶角度,以改变蒸汽进入叶轮的速度方向(C1U)和流量V。但流量V必须控制在稳定工作范围内,以免效率下降。

7. BP神经网络预测,预测结果与样本数据的理解。

输入节点数是3,说明输入向量的行数m=3,你给的样本只有1行,是不是不全?输出节点只有一个,说明每3个输入数据对应一个预测的输出数据。
其实样本数量很少,就不需要训练那么多次了,训练了也白训练。你问“这样的预测结果代表着什么?”,你也没说这些数据在现实中是什么,怎么会知道呢。

BP神经网络预测,预测结果与样本数据的理解。

8. bp神经网络研究现状

BP网络的误差逆传播算法因有中间隐含层和相应的学习规则,使得它具有很
强的非线性映射能力,而且网络的中间层数、各层神经元个数及网络的学习系数
等参数可以根据实际情况设定,有很大的灵活性,且能够识别含有噪声的样本,
经过学习能够把样本隐含的特征和规则分布在神经网络的连接权上。总的说来,
BP网络的优点主要有:
(1)算法推导清楚,学习精度较高;(2)经过训练后的BP网络,运行速度很快,有
的可用于实时处理;(3)多层(至少三层)BP网络具有理论上逼近任意非线性连续
函数的能力,也就是说,可以使多层前馈神经网络学会任何可学习的东西,而信
息处理的大部分问题都能归纳为数学映射,通过选择一定的非线性和连接强度调
节规律,BP网络就可解决任何一个信息处理的问题。目前,在手写字体的识别、
语音识别、文本一语言转换、图像识别以及生物医学信号处理方面已有实际的应
用。
同时BP算法与其它算法一样,也存在自身的缺陷:
(1)由于该算法采用误差导数指导学习过程,在存在较多局部极小点的情况下容易陷入局部极小点,不能保证收敛到全局最小点:(2)存在学习速度与精度之间的矛盾,当学习速度较快时,学习过程容易产生振荡,难以得到精确结果,而当学习速度较慢时,虽然结果的精度较高,但学习周期太长:(3)算法学习收敛速度慢;(4)网络学习记忆具有不稳定性,即当给一个训练好的网络提供新的学习记忆模式时,将使已有的连接权值打乱,导致已记忆的学习模式的信息消失;(5)网络中间层(隐含层)的层数及它的单元数的选取无理论上的指导,而是根据经验确定,因此网络的设计有时不一定是最佳的方案。
最新文章
热门文章
推荐阅读