支持向量机原理

2024-05-20 05:57

1. 支持向量机原理

支持向量机方法的基本思想是:定义最优线性超平面,并把寻找最优线性超平面的算法归结为求解一个凸规划问题。进而基于Mercer核展开定理,通过非线性映射φ,把样本空间映射到一个高维乃至于无穷维的特征空间(Hilbert空间),使在特征空间中可以应用线性学习机的方法解决样本空间中的高度非线性分类和回归等问题(Nello Cristianini,2005)。简单地说就是升维和线性化。一般的升维都会带来计算的复杂化。这里自然发生的两个问题是如何求得非线性映射φ和解决算法的复杂性。SVM方法巧妙地解决了这两个难题:由于应用了核函数的展开定理,所以根本不需要知道非线性映射的显式表达式;由于是在高维特征空间中应用线性学习机的方法,所以与线性模型相比不但几乎不增加计算的复杂性,而且在某种程度上避免了“维数灾”。另外,SVM是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度的定义及大数定律等,因此不同于现有的统计方法。从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”(transductive inference),大大简化了通常的分类和回归等问题。SVM的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾”。如果说神经网络方法是对样本的所有因子加权的话,SVM方法是对只占样本集少数的支持向量样本“加权”。当预报因子与预报对象间蕴涵的复杂非线性关系尚不清楚时,基于关键样本的方法可能优于基于因子的“加权”。少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。由于有较为严格的统计学习理论做保证,应用SVM方法建立的模型具有较好的推广能力。SVM方法可以给出所建模型的推广能力的确定的界,这是目前其它任何学习方法所不具备的。
随着支持向量机理论的深入研究,出现了许多变种的支持向量机,如Sheng-wei Fe(2009)提出的两类重要的预测技术:分类和回归。其中分类问题预测要求观察值是离散的,而回归问题主要针对决策属性值是连续的情况,它通过学习训练样本集建立一个回归器,然后在条件属性给定的情况下进行预测。
支持向量机回归分为线性回归和非线性回归,其原理如下:
(1)支持向量机线性回归
设样本集为:(x1,y1),…,(xi,yi),x∈Rn,y∈R,回归函数用下列线性方程来表示:
f(x)=w·x+b (4.14)
假设所有训练数据在ε精度下如图4.5所示无误差地用线性函数拟合,即

基坑降水工程的环境效应与评价方法


图4.5 支持向量机回归

考虑到允许误差的情况,引入松弛因子ξi,  ,则式(4.13)变为

基坑降水工程的环境效应与评价方法

其中常数C>0,表示对超出误差ε的样本的惩罚程度,ξi,  为松弛变量的上限与下限。为此构造拉格朗日函数:

基坑降水工程的环境效应与评价方法

得到其对偶问题为:

基坑降水工程的环境效应与评价方法


基坑降水工程的环境效应与评价方法


基坑降水工程的环境效应与评价方法

可以得到回归函数为:
其中,αi,  将只有一小部分小为零,它们对应的样本就是支持向量。
(2)支持向量机非线性回归
以上讨论的是线性问题,对于非线性问题,把输入样本xi通过ψ:x→H映射到高维特征空间H(可能是无穷维)。当在特征空间中构造最优超平面时,实际上只需进行内积运算,而这种内积运算是可以用原空间中的函数来实现的,没有必要知道ψ的形式。因为只要核函数K(xi,xj)满足Mercer条件,它就对应某一变换空间的内积即K(xi,xj)=ψ(i)·ψ(xj)。这一点提供了可能导致的“维数灾难”问题解决方法。
由线性支持向量回归可知,二次规划的拉格朗日目标函数:

基坑降水工程的环境效应与评价方法

其对偶形式:

基坑降水工程的环境效应与评价方法

可以得到回归函数为:

基坑降水工程的环境效应与评价方法

传统的拟合方法通常是在线性方程后面加高阶项。由此增加的可调参数增加了过拟合的风险。支持向量回归用核函数即能作非线性回归,达到了“升维”的目的,增加的可调参数很少,过拟合仍能控制。

支持向量机原理

2. 支持向量机的基本原理是什么?

  
  支持向量机回归分为线性回归和非线性回归,其原理如下:
  (1)支持向量机线性回归
  设样本集为:(x1,y1),…,(xi,yi),x∈Rn,y∈R,回归函数用下列线性方程来表示:
  f(x)=w·x+b(4.14)
  假设所有训练数据在ε精度下如图4.5所示无误差地用线性函数拟合,即
  基坑降水工程的环境效应与评价方法
  图4.5支持向量机回归
  考虑到允许误差的情况,引入松弛因子ξi,
  ,则式(4.13)变为
  基坑降水工程的环境效应与评价方法
  其中常数C>0,表示对超出误差ε的样本的惩罚程度,ξi,
  为松弛变量的上限与下限。为此构造拉格朗日函数:
  基坑降水工程的环境效应与评价方法
  得到其对偶问题为:
  基坑降水工程的环境效应与评价方法
  基坑降水工程的环境效应与评价方法
  基坑降水工程的环境效应与评价方法
  可以得到回归函数为:
  其中,αi,
  将只有一小部分小为零,它们对应的样本就是支持向量。
  (2)支持向量机非线性回归
  以上讨论的是线性问题,对于非线性问题,把输入样本xi通过ψ:x→H映射到高维特征空间H(可能是无穷维)。当在特征空间中构造最优超平面时,实际上只需进行内积运算,而这种内积运算是可以用原空间中的函数来实现的,没有必要知道ψ的形式。因为只要核函数K(xi,xj)满足Mercer条件,它就对应某一变换空间的内积即K(xi,xj)=ψ(i)·ψ(xj)。这一点提供了可能导致的“维数灾难”问题解决方法。
  由线性支持向量回归可知,二次规划的拉格朗日目标函数:
  基坑降水工程的环境效应与评价方法
  其对偶形式:
  基坑降水工程的环境效应与评价方法
  可以得到回归函数为:
  基坑降水工程的环境效应与评价方法
  传统的拟合方法通常是在线性方程后面加高阶项。由此增加的可调参数增加了过拟合的风险。支持向量回归用核函数即能作非线性回归,达到了“升维”的目的,增加的可调参数很少,过拟合仍能控制。

3. 支持向量机原理

支持向量机原理SVM简介
支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。



SVM算法原理
SVM学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。如下图所示,  \boldsymbol{w}\cdot x+b=0  即为分离超平面,对于线性可分的数据集来说,这样的超平面有无穷多个(即感知机),但是几何间隔最大的分离超平面却是唯一的。


在推导之前,先给出一些定义。假设给定一个特征空间上的训练数据集

 T=\left\{ \left( \boldsymbol{x}_1,y_1 \right) ,\left( \boldsymbol{x}_2,y_2 \right) ,...,\left( \boldsymbol{x}_N,y_N \right) \right\} 

其中, \boldsymbol{x}_i\in \mathbb{R}^n  ,  y_i\in \left\{ +1,-1 \right\} ,i=1,2,...N  , x_i 为第  i  个特征向量,  y_i  为类标记,当它等于+1时为正例;为-1时为负例。再假设训练数据集是线性可分的。

几何间隔:对于给定的数据集  T  和超平面 w\cdot x+b=0 ,定义超平面关于样本点  \left( x_i,y_i \right)  的几何间隔为

 \gamma _i=y_i\left( \frac{\boldsymbol{w}}{\lVert \boldsymbol{w} \rVert}\cdot \boldsymbol{x}_{\boldsymbol{i}}+\frac{b}{\lVert \boldsymbol{w} \rVert} \right) 

超平面关于所有样本点的几何间隔的最小值为

 \gamma =\underset{i=1,2...,N}{\min}\gamma _i 

实际上这个距离就是我们所谓的支持向量到超平面的距离。

根据以上定义,SVM模型的求解最大分割超平面问题可以表示为以下约束最优化问题

 \underset{\boldsymbol{w,}b}{\max}\ \gamma 

 s.t.\ \ \ y_i\left( \frac{\boldsymbol{w}}{\lVert \boldsymbol{w} \rVert}\cdot \boldsymbol{x}_{\boldsymbol{i}}+\frac{b}{\lVert \boldsymbol{w} \rVert} \right) \ge \gamma \ ,i=1,2,...,N 

将约束条件两边同时除以  \gamma  ,得到

 y_i\left( \frac{\boldsymbol{w}}{\lVert \boldsymbol{w} \rVert \gamma}\cdot \boldsymbol{x}_{\boldsymbol{i}}+\frac{b}{\lVert \boldsymbol{w} \rVert \gamma} \right) \ge 1 

因为  \lVert \boldsymbol{w} \rVert \text{,}\gamma  都是标量,所以为了表达式简洁起见,令

\boldsymbol{w}=\frac{\boldsymbol{w}}{\lVert \boldsymbol{w} \rVert \gamma}

b=\frac{b}{\lVert \boldsymbol{w} \rVert \gamma} 

得到

y_i\left( \boldsymbol{w}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) \ge 1,\ i=1,2,...,N

又因为最大化  \gamma  ,等价于最大化  \frac{1}{\lVert \boldsymbol{w} \rVert} ,也就等价于最小化  \frac{1}{2}\lVert \boldsymbol{w} \rVert ^2  ( \frac{1}{2} 是为了后面求导以后形式简洁,不影响结果),因此SVM模型的求解最大分割超平面问题又可以表示为以下约束最优化问题

 \underset{\boldsymbol{w,}b}{\min}\ \frac{1}{2}\lVert \boldsymbol{w} \rVert ^2 

 s.t.\ \ y_i\left( \boldsymbol{w}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) \ge 1,\ i=1,2,...,N 

这是一个含有不等式约束的凸二次规划问题,可以对其使用拉格朗日乘子法得到其对偶问题(dual problem)。

首先,我们将有约束的原始目标函数转换为无约束的新构造的拉格朗日目标函数

L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) =\frac{1}{2}\lVert \boldsymbol{w} \rVert ^2-\sum_{i=1}^N{\alpha _i\left( y_i\left( \boldsymbol{w}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) -1 \right)} 

其中  \alpha _i  为拉格朗日乘子,且  \alpha _i\ge 0  。现在我们令

 \theta \left( \boldsymbol{w} \right) =\underset{\alpha _{_i}\ge 0}{\max}\ L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) 

当样本点不满足约束条件时,即在可行解区域外:

 y_i\left( \boldsymbol{w}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) <1 

此时,将 \alpha _i  设置为无穷大,则  \theta \left( \boldsymbol{w} \right)  也为无穷大。

当满本点满足约束条件时,即在可行解区域内:

y_i\left( \boldsymbol{w}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) \ge 1 

此时,  \theta \left( \boldsymbol{w} \right)  为原函数本身。于是,将两种情况合并起来就可以得到我们新的目标函数

 \theta \left( \boldsymbol{w} \right) =\begin{cases} \frac{1}{2}\lVert \boldsymbol{w} \rVert ^2\ ,\boldsymbol{x}\in \text{可行区域}\\ +\infty \ \ \ \ \ ,\boldsymbol{x}\in \text{不可行区域}\\ \end{cases} 

于是原约束问题就等价于

 \underset{\boldsymbol{w,}b}{\min}\ \theta \left( \boldsymbol{w} \right) =\underset{\boldsymbol{w,}b}{\min}\underset{\alpha _i\ge 0}{\max}\ L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) =p^* 

看一下我们的新目标函数,先求最大值,再求最小值。这样的话,我们首先就要面对带有需要求解的参数  \boldsymbol{w}  和  b 的方程,而  \alpha _i 又是不等式约束,这个求解过程不好做。所以,我们需要使用拉格朗日函数对偶性,将最小和最大的位置交换一下,这样就变成了:

 \underset{\alpha _i\ge 0}{\max}\underset{\boldsymbol{w,}b}{\min}\ L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) =d^* 

要有  p^*=d^*  ,需要满足两个条件:

① 优化问题是凸优化问题

② 满足KKT条件

首先,本优化问题显然是一个凸优化问题,所以条件一满足,而要满足条件二,即要求

 \begin{cases} \alpha _i\ge 0\\ y_i\left( \boldsymbol{w}_{\boldsymbol{i}}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) -1\ge 0\\ \alpha _i\left( y_i\left( \boldsymbol{w}_{\boldsymbol{i}}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) -1 \right) =0\\ \end{cases} 

为了得到求解对偶问题的具体形式,令  L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right)  对  \boldsymbol{w} 和  b  的偏导为0,可得

\boldsymbol{w}=\sum_{i=1}^N{\alpha _iy_i\boldsymbol{x}_{\boldsymbol{i}}} 

\sum_{i=1}^N{\alpha _iy_i}=0 

将以上两个等式带入拉格朗日目标函数,消去  \boldsymbol{w} 和  b  , 得

 L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) =\frac{1}{2}\sum_{i=1}^N{\sum_{j=1}^N{\alpha _i\alpha _jy_iy_j\left( \boldsymbol{x}_{\boldsymbol{i}}\cdot \boldsymbol{x}_{\boldsymbol{j}} \right)}}-\sum_{i=1}^N{\alpha _iy_i\left( \left( \sum_{j=1}^N{\alpha _jy_j\boldsymbol{x}_{\boldsymbol{j}}} \right) \cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) +}\sum_{i=1}^N{\alpha _i} 

\ \ \ \ \ \ \ \ \ \ \ =-\frac{1}{2}\sum_{i=1}^N{\sum_{j=1}^N{\alpha _i\alpha _jy_iy_j\left( \boldsymbol{x}_{\boldsymbol{i}}\cdot \boldsymbol{x}_{\boldsymbol{j}} \right)}}+\sum_{i=1}^N{\alpha _i} 

即
\underset{\boldsymbol{w,}b}{\min}\ L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) =-\frac{1}{2}\sum_{i=1}^N{\sum_{j=1}^N{\alpha _i\al

支持向量机原理

4. 支持向量机原理讲解(一)

 支持向量机(Support Vector Machine,以下简称SVM),作为传统机器学习的一个非常重要的分类算法,它是一种通用的前馈网络类型,最早是由Vladimir N.Vapnik 和 Alexey Ya.Chervonenkis在1963年提出,目前的版本(soft margin)是Corinna Cortes 和 Vapnik在1993年提出,1995年发表。深度学习(2012)出现之前,如果不考虑集成学习的算法,不考虑特定的训练数据集,在分类算法中的表现SVM说是排第一估计是没有什么异议的。
   SVM本来是一种线性分类和非线性分类都支持的二元分类算法,但经过演变,现在也支持多分类问题,也能应用到了回归问题。本篇文章重点讲解线性支持向量机的模型原理和目标函数优化原理。
                                           在讲解SVM模型之前,我们可以先简单了解感知机模型的原理,因为这两个模型有一些相同的地方。在二维平面中,感知机模型是去找到一条直线,尽可能地将两个不同类别的样本点分开。同理,在三维甚至更高维空间中,就是要去找到一个超平面。定义这个超平面为wTx+b=0(在二维平面中,就相当于直线w_1 x+w_1 y+b=0),而在超平面上方的点,定义为y=1,在超平面下方的点,定义为y=-1。而这样的超平面可能是不唯一的,那么感知机是怎么定期最优超平面呢?从感知机模型的目标函数中,我们了解到它是希望让所有误分类的点(定义为M)到超平面的距离和最小。其目标函数如下:
     
   (注:加入  是因为点若在超平面下,  为负数,需要乘上对应的  )
   当w和b成比例增加了之后,比如都扩大N倍,会发现,分子和分母都会同时扩大N倍,这对目标函数并不影响。因此,当我们将W扩大或缩小一定倍数使得,||w||=1,分子也会相应的扩大或缩小,这样,目标函数就能简化成以下形式:
     
   这个思想将会应用到支持向量机的目标函数优化上,后文将会详细讲解。
   正如上文所说,线性支持向量机的思想跟感知机的思想很相似。其思想也是对给定的训练样本,找到一个超平面去尽可能的分隔更多正反例。不同的是其选择最优的超平面是基于正反例离这个超平面尽可能远。
                                           从上图可以发现,其实只要我们能保证距离超平面最近的那些点离超平面尽可能远,就能保证所有的正反例离这个超平面尽可能的远。因此,我们定义这些距离超平面最近的点为支持向量(如上图中虚线所穿过的点)。并且定义正负支持向量的距离为Margin。
   对SVM思想有一定理解之后,设超平面为  。我们讲解一下函数间隔和几何间隔的区别。
   给定一个样本  ,  表示点x到超平面的距离。通过观察  和  是否同号,我们判断分类是否正确。所以函数间隔定义  为:
     
   而函数间隔不能正常反应点到超平面的距离,因为当我们等比例扩大  和  的时候,函数间隔也会扩大相应的倍数。因此,我们引入几何间隔。
   几何间隔就是在函数间隔的基础下,在分母上对  加上约束(这个约束有点像归一化),定义为  :
        其实参考点到直线的距离,我们可以发现几何间隔就是高维空间中点到超平面的距离,才能真正反映点到超平面的距离。
   根据SVM的思想,我们可以知道是要取最大化支持向量到超平面的几何间隔,所以目标函数可以表示为:
     
   在感知机模型最后,我们知道当同时扩大w和b,分子分母都会同样扩大,对目标函数不影响,所以在这里我们将分子(支持向量到超平面的函数间隔)扩大或压缩等于1,则目标函数可以转化为:
     
   但是上式并不是凸函数,不好求解,再进一步转化为:
     
   上式就是一个凸函数,并且不等式约束为仿射函数,因此可以使用拉格朗日对偶去求解该问题。
   根据拉格朗日乘子法,引入拉格朗日乘子α,且α≥0我们可以知道,先不考虑min,(2)问题等价于:
     
   然后再考虑min,则有:
     
   应用拉格朗日对偶性,通过求解对偶问题得到最优解,则对偶问题的目标函数为:
     
   这就是线性可分条件下支持向量机的对偶算法。这样做的优点在于:一是原问题的对偶问题往往更容易求解,二者可以自然的引入核函数,进而推广到非线性分类问题。
   从(4)中,我们可以先求目标函数对于  和  的极小值,再求拉格朗日乘子  的极大值。
   首先,分别对  和  分别求偏导数,并令为0:
        得:     
     
   将(5)和(6)代入(4)得到:
     
   对(7)取反得到:
     
   只要我们可以求出(8)中极小化的  向量,那么我们就可以对应的得到  和  ,而求解  需要使用SMO算法,由于该算法比较复杂,我们将在下一篇文章专门讲解。假设我们现在已经使用SMO算法得到了最优的  值,记为  
     
   再求  :
   对于任一样本  有:
     
   注意到任一样本都有  ,则将右式的1用  代:
     
   将(9)代入上式,可以得到:
     
   这样,我们就能够求解得到线性支持向量机的目标函数的各个参数,进而得到最优的超平面,将正负样本分隔开。但是在上文中我们没有讲解求  向量的SMO算法,在下篇文章,将会详细讲解SMO算法,欢迎继续关注。

5. 支持向量机的基本思想是什么?

将数据进行分类是机器学习中的一项常见任务。 假设某些给定的数据点各自属于两个类之一,而目标是确定新数据点将在哪个类中。对于支持向量机来说,数据点被视为P维向量,而我们想知道是否可以用(p-1)维超平面来分开这些点。这就是所谓的线性分类器。
可能有许多超平面可以把数据分类。最佳超平面的一个合理选择是以最大间隔把两个类分开的超平面。因此,要选择能够让到每边最近的数据点的距离最大化的超平面。如果存在这样的超平面,则称为最大间隔超平面,而其定义的线性分类器被称为最大间隔分类器,或者叫做最佳稳定性感知器。
除了进行线性分类之外,SVM还可以使用所谓的核技巧有效地进行非线性分类,将其输入隐式映射到高维特征空间中。
当数据未被标记时,不能进行监督式学习,需要用非监督式学习,它会尝试找出数据到簇的自然聚类,并将新数据映射到这些已形成的簇。将支持向量机改进的聚类算法被称为支持向量聚类,当数据未被标记或者仅一些数据被标记时,支持向量聚类经常在工业应用中用作分类步骤的预处理。

应用
1、用于文本和超文本的分类,在归纳和直推方法中都可以显著减少所需要的有类标的样本数。
2、用于图像分类。实验结果显示:在经过三到四轮相关反馈之后,比起传统的查询优化方案,支持向量机能够获取明显更高的搜索准确度。这同样也适用于图像分割系统,比如使用Vapnik所建议的使用特权方法的修改版本SVM的那些图像分割系统。
3、用于手写字体识别。
4、用于医学中分类蛋白质,超过90%的化合物能够被正确分类。基于支持向量机权重的置换测试已被建议作为一种机制,用于解释的支持向量机模型。支持向量机权重也被用来解释过去的SVM模型。
为识别模型用于进行预测的特征而对支持向量机模型做出事后解释是在生物科学中具有特殊意义的相对较新的研究领域。

支持向量机的基本思想是什么?

6. 支持向量机的总体概述:

在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。给定一组训练样本,每个标记为属于两类,一个SVM训练算法建立了一个模型,分配新的实例为一类或其他类,使其成为非概率二元线性分类。一个SVM模型的例子,如在空间中的点,映射,使得所述不同的类别的例子是由一个明显的差距是尽可能宽划分的表示。新的实施例则映射到相同的空间中,并预测基于它们落在所述间隙侧上属于一个类别。除了进行线性分类,支持向量机可以使用所谓的核技巧,它们的输入隐含映射成高维特征空间中有效地进行非线性分类。

7. 支持向量机的有关介绍:

更正式地说,一个支持向量机的构造一个超平面,或在高或无限维空间,其可以用于分类,回归,或其它任务中设定的超平面的。直观地,一个良好的分离通过具有到任何类(所谓官能余量)的最接近的训练数据点的最大距离的超平面的一般实现中,由于较大的裕度下分类器的泛化误差。而原来的问题可能在一个有限维空间中所述,经常发生以鉴别集是不是在该空间线性可分。出于这个原因,有人建议,在原始有限维空间映射到一个高得多的立体空间,推测使分离在空间比较容易。保持计算负荷合理,使用支持向量机计划的映射被设计成确保在点积可在原空间中的变量而言容易地计算,通过定义它们中选择的核函数k(x,y)的计算以适应的问题。在高维空间中的超平面被定义为一组点的点积与该空间中的向量是恒定的。限定的超平面的载体可被选择为线性组合与参数\alpha_i中发生的数据的基础上的特征向量的图像。这种选择一个超平面,该点中的x的特征空间映射到超平面是由关系定义:\字型\sum_i\alpha_ik(x_i中,x)=\mathrm{常数}。注意,如果k(x,y)变小为y的增长进一步远离的x,在求和的每一项测量测试点x的接近程度的相应数据基点x_i的程度。以这种方式,内核上面的总和可以被用于测量各个测试点的对数据点始发于一个或另一个集合中的要被鉴别的相对接近程度。注意一个事实,即设定点的x映射到任何超平面可以相当卷积的结果,使集未在原始空间凸出于各之间复杂得多歧视。

支持向量机的有关介绍:

8. 支持向量机的支持向量概述

所谓支持向量是指那些在间隔区边缘的训练样本点。 这里的“机(machine,机器)”实际上是一个算法。在机器学习领域,常把一些算法看做是一个机器。支持向量机(Support vector machines,SVM)与神经网络类似,都是学习型的机制,但与神经网络不同的是SVM使用的是数学方法和优化技术。

最新文章
热门文章
推荐阅读